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XXIII. Phase changes and convection in the Earth’s mantle

By J. VERHOOGEN
Unwersity of California, Berkeley

A phase change may hinder or enhance convection, depending on its characteristics. Univariant
transformations such as may occur in the mantle constitute a barrier to convection unless the
motion starts at some distance above or below the transition level; an initial temperature gradient
in excess of the adiabatic value is also required. Multivariant transformations only require, in
the transformation zone, an initial gradient slightly greater than the adiabatic value for a homo-
geneous layer. The effect on convection of transformation rates is not likely to be serious.

I

There seems to be general agreement that the occurrence of a reversible phase transforma-
tion in a convective system may either impede or enhance instability, depending on the
thermodynamic parameters of the transformation.Vening Meinesz (1962) and Brooks (1954)
are among those who think that phase transitions in the upper mantle might contribute to
convective instability, while Knopoft (1964) states that the inhomogeneous region in the
mantle represents a true barrier to convection. Both conclusions appear to be wrong. The
main difficulty in approaching the problem is that the nature of the phase transitions
occurring in layer C (200 to 900 km) of the mantle is not known. The parameters for a few
possibly relevant reactions are listed in table 1. (All entries in that table are uncertain, some
by as much as a factor of 2.) They suggest that phase transitions in the mantle are likely to be
characterized by a volume change AV of a few cm®/mole, and by an entropy change AS
of a few calories per degree per mole. Characteristically, AV and AS have the same sign,
so that heat is evolved when going from the light to the dense phase (or assemblage of
phases), and is absorbed in the opposite reaction. The slope of an univariant equilibrium
curve is likely to be of the order of 40 to 50 degC/kb; however, the extension of the transi-
tional zone C down to about 900 km, where the pressure is of the order of 350 kb, suggest
that there must be at least one transformation that has a much more gentle slope, or a much
higher equilibrium pressure at 0 °C, than any listed in table 1, with the possible exception
of the last one.

Consider first a univariant system consisting of one component and two phases (e.g.
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:é coesite and stishovite), or two components and three phases (e.g. forsterite, stishovite,
EE periclase). The variance is 1, so that the pressure uniquely determines the equilibrium
M= temperature; the slope d 7'/dP of the equilibrium curve is, or course, AV/AS.

Q) Let the equilibrium curve and natural temperature distribution curve intersect at 4
E 8 (figure 1), and suppose that a small mass of the dense phase (or assemblage of phases) is

displaced upwards from A. If the transformation dense—light runs adiabatically, the
temperature falls as the reaction proceeds, as it is endothermic in that sense. The pressure
must therefore also drop, and the system remains on the univariant curve, cooling and
expanding along AB; at some point B the reaction is completed. In the interval 4B the
density of the rising mass is everywhere greater than that of its surroundings because its
temperature is lower and because it still contains an untransformed fraction of the original
dense phase. Similarly, downward motion starting at 4 proceeds along AC, the density
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being everywhere less than that of the surrounding. The system is thus completely stable
with respect to convection starting at 4. The case where the slope of the equilibrium curve
is less than the natural gradient is of no interest, as it cannot occur in the mantle where
the undisturbed density increases with depth.

TABLE 1. POSSIBLE VALUES FOR THE PARAMETERS OF SOME
POSSIBLE PHASE TRANSITIONS IN THE MANTLE*

equilibrium
AS pressure at
AV (cal mole—! AG,gq dT/dP 298 °K
reaction (cm3/mole)  degC-1) (cal/mole) (degC/kb) (kb)
Si10, - SiO,
coesite — stishovite —59 —-3-0 +13-7 47 97-5
Si0, —+ SiO,
quartz  stishovite —87 —-37 +15-3 56 73-0
Mg,Si0, - Mg,SiO,
forsterite — spinel —-37 -20 — 44 —
Mg,Si0, - 2MgO +8iO,
forsterite  stishovite -7-3 —-33 +30-4 53 175
MgSiO, - $Mg,Si0, + 1510,
clinoenstatite  forsterite stishovite —2-65 —1:7 +12-4 37 97-5
Mg,Si0, - MgSiO,; +MgO
forsterite  corundum —6-8 —_ >20-4 — > 125
MgSiO,; - MgSiO,
clinoenstatite  corundum —5-8 — > 14-0 —_ > 100
MgSiO, - MgO + SiO,
corundum stishovite —0-5 —_ < 100 —_— < 840

* Figures taken or calculated from Sclar, Carrison & Schwartz 1964, Ringwood 1962, and from thermo-
dynamic data listed in Fyfe, Turner & Verhoogen 1958, p. 23.

N

depth —

Ficure 1. Transformation path in a univariant system. Curve a is the univariant equilibrium curve;
curve b is the natural temperature distribution. An adiabatic path through A4 follows the
equilibrium curve to B (ascending current) or to C (descending current).

Suppose, however, that upward motion start at a point 4, (figure 2) sufficiently below
the phase boundary, and that the initial gradient sufficiently exceeds the adiabatic gradient
in the lower layer. The temperature of a rising mass drops along the adiabatic line 4B
(neglecting viscous dissipation, etc.), and the phase transformation begins at B. If it is
completed at C, the density of the rising mass will, at all points of the path ABC, be less than
that of its surroundings (figure 3), and convection may break through the phase boundary.
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The depth at which convection must start in order that the transformation be completed
at C (figure 2) may be estimated as follows. Assume all gradients to be constant in the range
considered ; then (figure 2) T, = To+pD,

where £ is the natural gradient. But

T)=Ty+5(D—d),

|
|
|
|
|
|
|
|
|
|
|

.

depth—su-

Figure 2. Convection through a univariant transformation. Curves a and 4 represent, as in figure 1,
the phase equilibrium curve and the natural temperature distribution, respectively. The curve
AB is an adiabatic path in medium 1. Numbers 1 and 2 refer to the dense and light phases,
respectively. d is the thickness of the transition zone.

density —m

H, Hy H,

depth —-—-)—

Figure 3. Diagram of density against depth in an ascending current (4BCD) and descending
current (EFGH). The density in the descending branch is everywhere greater than the ascending
branch. The curve ECGA represents the undisturbed density distribution, with phase transition
at depth Hy. The shaded area is proportional to the potential energy released in an overturn.

where f, is the adiabatic gradient in the lower layer, and 4 is the thickness of the transition

zone BC. Thus 1 V;
D:B—'(TB"_TC)—F;‘ g (1)
where £’ is the superadiabatic gradient f— /..

To find T;—T, = AT, one is tempted to write AT = AH[c,where AH is the latent heat
of transformation and ¢ is an appropriate specific heat. This expression, which is frequently
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used, needs justification. In the first place, AH varies nearly linearly with temperature, as
the entropy of transformation AS = AH| T is approximately constant. Secondly, ¢ cannot be
taken as the specific heat at constant pressure, because the specific heat of a system under-
going a first-order phase transition at constant pressure is infinite (an infinitesimal change
in temperature about the equilibrium point causes a finite change in heat content).

Let x be at any point between B and C the molar fraction of untransformed dense phase 1,
and (1—x) the fraction of the light phase 2. Thus x =1 at B and x = 0 at C, for upward
motion. The entropy per mole is

S = xS+ (1—x) Sy = S, -+2(S,—S,) = S,-+2AS, 2)

where AS = §) —S, is the entropy of transition (AS isgenerally negative). For an adiabatic
change, d§ = 0. Thus ‘

28 28 28
(51—,) Pt (»E;«T)P’xdTJr (9;) dx=o (3)

Using (2), and noting that

a8, a8,
(—3?‘)71 =—o, 1, (ﬁ)p =¢,|T, etc.

a = thermal expansion; ¢, = specific heat at constant P of phase 1), we get
p 1= SP p g
[ty Vyt-5(— 2, Vy + oo Vi AP+ [y #(e, — )] (AT T) + ASdx = o.

Along the equilibrium curve dP = (AS/AV)dT. To simplify, suppose that «, = a,,
¢, = ¢y =c¢. Then

d7" |4 ¢ 7 /4 ¢
@ = eresy 7ixs| = (U9 [+ w5 aras ) (4)
Note that 0 < x < 1. The term V,/AV may be of the order of 10 to 20, whereas ¢/(a TAS)
may be much larger; we might have, for instance, e ~2x 1075, T'~ 2 x 103, AS = —3 cal

mole~!degC~! (see table 1), whereas ¢ is close to 0-3 cal g~ ! degC~1, or 30 cal mole~! degC1.
Neglecting all terms other than the one containing 7" in the denominator of (4), we get

dT _TAS
dx c

Integrating for x from 1 to 0, and for 7T from T} to T, yields
T, — Tyoxp (—ASJo). (5)
Now AS/c is of the order of —0-1 or less; thus T ~ 1-17¢, and if
Ty = 2000°C, Tp—T,=200degC.

To find d, we note that if the slope of the univariant curve is about 50 degC/kb, the
pressure at B exceeds that at C by about 4kb, and d~ 10km. Suppose that § = 28,, or
f' = f; = 0-5degC/km, say. Then from (1) D ~400km. But if ' is smaller, or of the order,
say, of 0-1degC/km, D ~ 2000km. Thus we find that a convection current may or may
not break through a phase boundary, depending on where it starts; a phase transition acts
as a filter which stops small perturbations, but allows large, deep-seated, ones to go through.
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The efficiency of the phase transition as an obstacle to convection depends primarily
on AS. If ASis very large, and the univariant equilibrium curve very flat, convection will be
hindered; if AS is very small and the univariant curve very steep, the inhibition is small.
Convection is not affected at all by a phase transition if AS = 0 (no latent heat). Figure 3
shows the density as a function of depth in ascending and descending columns. The gravita-
tional energy E released in a cycle is [gdp dk, where p is the difference in density, at the same
level, between sinking and rising currents; £ is thus proportional to the shaded area in
figure 3. We note that if the ascending current starts at a point midway between G and 4,
while the descending current starts midway between £ and C, their density-depth curves
would coincide, and no gravitational energy would be released; convection through the
transition then becomes impossible.

Consider now a bivariant system consisting of two components and two phases, both of
which are solid solutions; the olivine-spinel transformation in the system Fe,Si0,~Mg,SiO,
may serve as an example. At constant temperature, and for a given composition, the
transition starts at a pressure P, and ends at a higher pressure P,. In the interval P, to P,
the composition of both phases and their relative amount change continuously. The molar
fraction of the spinel phase increases continuously (but is not a linear function of the
pressure (see Meijering & Rooymans 1958) ; at the same time the density of both the spinel
and olivine phases may decrease with increasing pressure, because of their changing com-
position. Both P, and P, depend on temperature and gross composition of the system. The
curves labelled 1 and 2 in figure 4 represent the P-7" conditions under which the transforma-
tion starts and ends for a given gross composition. In the P-7 field between these two
curves the variance is 2, and the system can exist in equilibrium at any point in that field.
The function F(z) which, according to Vening Meinesz (1962, p. 150), gives the phase
equilibrium temperature at depth z does not exist.

Consider now material initially at 4 (figure 4), and displace it upwards adiabatically.
The system is unstable if the adiabatic path 4B through the transition zone lies above AC,
which represents the natural initial temperature gradient.

To determine the adiabatic path 4B, let AS be, as before, the entropy of transformation
S, =S, (subscripts 1 and 2 refer, respectively, to the spinel and olivine phases). Both
and S, depend on composition, which we assume to be known. We also assume that AS is
independent of P and 7. We have

i a =S, 4 +AS, | (6)
SI,B = SZ,B+AS‘ (7)
T, CI Py
But Sy = SI,B+fT b ar—| "uviap. (8)

Along an adiabatic path §; , =8, , = §; ,—AS, by (7). Thus

T, ¢

PA
AS:J oclVldP—j d, 9)
PB Tﬁ T

from which P, and 7 may be determined, given P, and 7, or vice versa; P, and 7, must, of
course, be related so that the representative point falls on the univariant curve (2). Alter-
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natively, P, and 7, may be determined from a second equation similar to (8) but relating
to the olivine phase:

T, 02 P,
Sz,A=S2,B+J- %2 dT— [ *a,V5dP.
TB

Py

Let P,— P, = AP, and let «V be the average value of «, V] in the interval P; similarly, let
¢ be an average value of ¢,. Integration of (9) gives

In (T,/T,) = [aV AP—AS]/e. | (10)

The corresponding expression for an adiabatic path in a homogeneous layer would be,
of course, In (T,/T;) = aV AP/c; the phase transformation merely introduces an additional
term AS/c in the expression for the adiabatic gradient. As AS' is generally negative, the
adiabatic gradient is steeper in the transition zone than outside it.

depth —

Ficure 4. Convection through a divariant transformation. Curves () and (2) represent the beginning
and end of the transformation for a given composition. AC is the natural temperature distri-
bution; AB represents an adiabatic path, starting at A4, through the transition zone. Phases 1
(dense) and 2 (light) coexist between curves () and (2); their composition is variable in that
interval.

Consider, for example, a multivariant phase transition that spreads, in the mantle, over
a pressure range of, say, 100kb; i.e. P;—P; = 100kb (figure 4). Then AP = P,—P, is less
than this, say 80 kb (figure 3). The term aVV AP would be of the order of 2 X 1075 x 35 x 8 x 10*
bar cm®mole~!degC~!, or 5-6calmole~!degC-!. By comparison, the entropy of the
spinel — olivine transition might not be greater than 2 cal mole~!degC-!. Thus, the phase
transition steepens the adiabatic gradient, but not very much. Note that at point B, where
the adiabatic transformation starting at 4 is completed, the system is lighter than its sur-
roundings because it consists entirely of the light phase 2 at temperature 75, whereas the
surroundings consist of a mixture of light and dense phases at a lower temperature.
Instability above the transition zone is thus enhanced.

It is interesting that if phase transitions and convection both occur in the mantle, it
should be possible, theoretically, to map seismologically regions of ascending and descending
currents. Indeed, if a univariant transformation occurs in an undisturbed region at depth
H, (figure 3), the transformation starts in an ascending current at the greater depth Hj,

36 Vor. 258. A.
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and in a descending current at a lesser depth H,. Similarly, divariant transition extends
(figure 5), from F to G in a descending current, and from C to B in an ascending one. Depth
differences will, however, presumably be of the order of only a few kilometres.

The preceding discussion assumes that transformation rates are such that the com-
position of a moving mass remains at all times in equilibrium at the local P-T conditions.
If transformations were sluggish and did not run at a rate comparable to the upward or
downward velocity, phase transitions would inhibit convection just as a density stratification
would. Clearly, if K is the specific reaction rates (fraction transformed per unit time), we
must have K > v/d where v is the vertical velocity and d is the thickness of the transition
zone (e.g. d in figure 2). Ifv = 1077 cm/s, d = 105cm, then K = 10713571,

depth —

Ficure 5. Transition depth for ascending and descending currents, for the case of divariant equili-
brium (fixed composition). Curves (I) and (2) are as in figure 4; E4 represents the temperature
distribution before convection. ABCD is an adiabatic path for an ascending current; EFGH is
a similar path for a descending current. The transition zone in the descending current (F to G)
lies above that (BC) for the ascending current.

The geological record shows clearly that phase transformations do not invariably occur
at such rates. Metamorphic rocks commonly contain dense phases (e.g. kyanite, garnet,
aragonite, etc.) which have failed to revert to their low pressure form when brought to the
surface at a rate that cannot be much greater than the rate of isostatic adjustment or of
convective motion. This persistence of high pressure forms is commonly attributed to the
low temperatures, and therefore slow reaction rates, prevailing near the surface of the
Earth; yet one finds in basalts erupted at 1200 °C or so fragments of eclogite which have
failed to revert to their low pressure form; and diamonds commonly survive in hot kimber-
lites. Itis of course likely that in the last two instances the rate of upward motion was much
greater than 10~7 cm/s. But as pressure generally has an adverse effect on rates of transforma-
tion, it may be necessary to consider the matter more carefully.

Theory predicts that reaction rates should in general be of the form

K = A e-AGHIRT,
where AG* is the Gibbs free-energy of activation. But G = E-+ PV — T, so that K may be

written as T
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where K is a constant that includes an entropy of activation. E* is the energy of activation
determined by plotting, at P = 0, the log K against 1/7". V* is the activation volume which,
for processes involving diffusion and growth, is generally of the order of, but smaller than,
the molar volume of the diffusing unit.
If Pand T are varied simultaneously so as to remain in the neighbourhood of equilibrium,
d7T AV
aF ~as b s
E* 4 PV* 4

or RT R _ gy (g T).

At equilibrium P = Py+ T/f3, where P is the equilibrium pressure at 7= 0. Thus near
equilibrium we have, approximately,

dinK
dP

and since E*, V* and P, are generally positive, dIn K/dP > 0. This is in accord with the
observation that transformation rates generally increase markedly when P and T are raised
simultaneously so as to remain near equilibrium.

A typical transformation might be such that E* ~ 10°cal/mole, Py~ 10%b, V'* = 10 cm?,
f = 5x10"2degCb~1. Then, at T' = 2x 10*degC, dIn K/dP ~ 1073 b~1. Thus, for instance,
the rate of the reaction coesite — stishovite at 200 kb (and 5000 °C) might be e!%° times what
it is at 100kb (and 0°C). There is, indeed, experimental evidence to show that stishovite
may form in shock waves in a time of the order of 1076s.

We conclude that phase transitions of the kind that may occur in the mantle are likely
to slightly inhibit convection, but are not such as to make it impossible. A univariant
transition forms no serious obstacle to convection provided that: (1) the entropy of trans-
formation be small enough; (2) the super-adiabatic gradient in the lower layer be large
enough; and (3) the upward (downward) motion start sufficiently far below (above) the
transition level. Convection through a multivariant transition zone requires a temperature
gradient only slightly greater than that needed for convection in a homogeneous layer.
Transformation rates are not likely to hinder convection. N :

Phase transformations have no effect on convection caused by horizontal temperature
gradients.

RT?

= PLE*+ 1, V*],
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